tel:5478354125, fax:5478354126 www.soilboring.com, info@soilboring.com Project: Shopping center - Black Rose

Analysis of micropile

Input data

Project

Date: 8/1/2009

Soil parameters

Soil no 1

Geometry

Material parameters of structure:

Concrete

Specified characteristic compressive strength $R_{bd} = 20.00 \text{ MPa}$ Elastic modulus $E_b = 29000.00 \text{ MPa}$

Steel

Specified characteristic strength of steel R_{sd} = 210.00 MPa Elastic modulus E_{s} = 210000.00 MPa

Geological profile and assigned soils

No.	Layer [m]	Assigned soil	Pattern
1	-	Soil no 1	[///s

Load

No.	Force		Name	Force	Moment
	new	change		N [kN]	M [kNm]
1	YES		Force No. 1	120.00	9.50

tel:5478354125, fax:5478354126 www.soilboring.com, info@soilboring.com Project: Shopping center - Black Rose

Global settings

Verification of stem bearing capacity - geometric method (Euler) Root bearing capacity calculation - Lizzi theory

Settings of the stage of construction

Masonry friction reduction factor base-soil μ = 0.90 Verification analysis according to the factor of safety Safety factor for critical force $SF_1 = 1.50$ Safety factor for cross-section bearing capacity $SF_2 = 1.50$ Safety factor for root bearing capacity $FS_3 = 1.50$

Verification No. 1

Cross-section check -calculation no. 1

Calculation with corrosion effect

Intended durability t = 50 [years] Soil type: native soils

Internal stability checking: geometric method (Euler)

calculation of section effective length - bearing (hinged-hinged).

Modulus of subsoil reaction $E_p = 0.80 \text{ MN/m}^3$ Calculate number of halfwaves $\vec{n} = 0.00$ $I_{cr} = 2.85 \text{ m}$ Effective length Critical normal force $N_{cr} = 1167.14 \text{ kN}$

Maximal normal force $N_{max} = 120.00 \text{ kN}$

Safety factor = 9.73 > 1.50

Internal stability of micropile section is SATISFACTORY

Evaluation of coupled section bearing capacity:

Area of ideal cross-section $A_i = 3.522E+03 \text{ mm}^2$ Moment of inertia of ideal cross-section $J_i = 4.565E+06 \text{ mm}^4$ Beam slenderness = 79.082 λ **Buckling coefficient** 0.719 κ Location of neutral axis -26.5 mm

Stress in steel σ = 119.91 MPa Steel strenght σ_{rd} = 210.00 MPa

Safety factor = 1.75 > 1.50

Coupled section of micropile is SATISFACTORY

Verification No. 1

Root evaluation - calculation number 1

Calculation method - Lizzi theory.

Coefficient of root diameter influence = 0.80

Average limit skin friction q_{sav} = 120.00 kPa

Total bearing capacity of micropile root = 271.43 kN

Bearing capacity of the micropile Q = 271.43 kNMaximal normal force $N_{\text{max}} = 120.00 \text{ kN}$

Safety factor = 2.26 > 1.50

Bearing capacity of the root is SATISFACTORY

